फर्मेट के अंतिम प्रमेय ‘आभाहीन’ हुए !
पाइथागोरस प्रमेय (p^2 + b^2) = h^2 को लेकर पियरे D’ FERMAT ने एक कल्पना प्रस्तुत किया था कि उक्त प्रमेय की भांति (p^n + b^n) = h^n में n = कोई भी संख्या हो सकता है या नहीं ! इसे FERMAT का अंतिम प्रमेय FLT कहा जाता है, किन्तु इसपर ध्यान देने से स्पष्ट होता है कि यह “त्रिभुज आकृति” के सूत्र है, यथा-
(3^2) + (4^2) = 5^2, जो कि वर्ग (square) के लिए ऐसा ठीक है, किन्तु घन (cube) या चतुर्घात या पंचघात या कोई घात ऐसी स्थिति में त्रिभुजीय सोच लिए ही संभव हो सकता है, किन्तु किसी संख्या की सोच लिए नहीं, इसलिए Non FLT सोच के साथ ये सब “आकृति संख्या” होगी , यथा-
(6^3) + (8^3) + (10^3) = 12^3
(9^3) + (12^3) + (15^3) = 18^3
(4^4) + (6^4) + (8^4) + (9^4) + (14^4) = 15^4
(8^4) + (12^4) + (16^4) + (18^4) + (28^4) = 30^4
…..इत्यादि आकृति संख्याएँ हैं । घन हेतु चतर्भुज और चतुर्घात हेतु षट्भुज आदि के प्रमेय सूत्र आकृति संख्या यानी Figure Numbers कहलाती हैं, इसलिए (x^n) + (y^n) = (z^n) केवल n = 2 के रूप में ही संभव है n > 2 के रूप में नहीं!